Difference between revisions of "Kinetic Wind Generator"

From Industrial-Craft-Wiki
Jump to navigation Jump to search
(24 intermediate revisions by 10 users not shown)
Line 1: Line 1:
<div style="float:right">[[File:KWG_ig.png|300px|thumb|The Kinetic Wind Generator, with an Iron Rotor inside, in action]]</div>
[[File:KWG_ig.png|300px|thumb|The Kinetic Wind Generator, with an Iron Rotor inside, in action]]


The Kinetic Wind Generator is an upgrade of the old [[Windmill]]. It generates energy from wind power which varies randomly, although certain factors can change this. Unlike the Windmill, the Kinetic Wind Generator will require maintenance in the form of the Rotors. These are needed to run the Kinetic Wind Generator. Once a Rotor is placed inside the GUI, the block is given sufficient space, and the current wind level is adequate for the current rotor, the Kinetic Wind Generator will begin to generate Kinetic Energy. This can be converted into EU by using a [[Kinetic Generator]] attached to the correct face(the black circle).
The '''Kinetic Wind Generator''' (or '''Wind Turbine''') is an upgrade of the old {{Gin|Windmill}}. It generates energy from wind power. The Wind Turbine requires maintenance, as the rotor will need to be replaced.  


A rotor is required to run a Wind Turbine. Once a rotor is placed inside the GUI, the turbine is given sufficient space, and the wind level is strong enough for the rotor, the Wind Turbine will generate [[Kinetic Units|Kinetic Energy]]. This can be converted into [[EU]] with a {{Gin|Kinetic Generator}} placed next to the turbine.
__TOC__
== Recipe ==
{{Grid/Crafting Table
{{Grid/Crafting Table
|A2=Shaft (Iron)|B2=Machine|C2=Shaft (Iron)
|A2=Shaft (Iron)|B2=Machine|C2=Shaft (Iron)
Line 8: Line 13:
}}
}}


See: [http://crafting-guide.com/item/kinetic_wind_generator Crafting Guide]
== Kinetic Unit Output ==
 
KU output = wind strength * output modifier * rotor efficiency
 
Arguments in the formula:
 
Wind strength: the strength of wind, can be test by {{Gin|Windmeter}};
 
Output modifier: Used for control the balance of different energies, is 1.0 by default;
 
Motor efficiency: Related to rotor type.


== About Wind ==
== Wind Strength ==
The wind strength, measured in MCW, is affected by 3 factors: Height, Weather, and a Random Factor.


First off, the wind strength of a particular area is affected by 3 factors: Height, Weather, and Chance. The higher up in the world you are, the higher the wind level. Below y64, there is never enough wind to be used, and KWG's will not function at all. Weather will also give boosts; Rainy weather will give a 20% boost to normal wind levels, and stormy weather will give a 50% boost. The final factor of chance makes the wind strength vary randomly, however there is a limited range of variation.  
Height is a main factor of wind strength.
Below y = 64, there is never enough wind, and the generator will not create EU at all.
Wind is strongest at around y = 160.
There is very little wind at y=255, hence no point attempting to run a wind turbine that high.


The easiest way to check the current wind level in an area is by using a [[Windmeter]].
Weather also give boosts.
-WIP-
Rainy weather will yield a 25% boost.
Stormy weather will yield a 50% boost.
 
At every update, the wind direction may change +18 degree or -18 degree or not change. The three choices have same probabilities.
There's no evidence that the wind direction will affect EU generation.
 
The easiest way to check the current wind level in an area is by using a {{Gin|Windmeter}}.


== Spacing ==
== Spacing ==
[[File:KWG_1.png|250px|thumb|left|Figure 1. Notice how the rotors overlap]] [[File:KWG_3.png|250px|thumb|right|Figure 3.]]  
[[File:KWG_1.png|250px|thumb|left|Figure 1. Notice how the rotors overlap]] [[File:KWG_3.png|250px|thumb|right|Figure 3.]]  
[[File:KWG_2.png|250px|thumb|left|Figure 2. Notice how the third rotor in the background still functions]] [[File:KWG_4.png|250px|thumb|right|Figure 4.]]
[[File:KWG_2.png|250px|thumb|left|Figure 2. Notice how the third rotor in the background still functions]] [[File:KWG_4.png|250px|thumb|right|Figure 4.]]




For the most part, the only space requirements of Kinetic Wind Generator is the rotor blades.   
For the most part, the only real space requirements of the Kinetic Wind Generator are the rotor blades.   
*First, you must make sure the the rotor blades are free from obstruction, this includes other rotors(Figure 1).
 
*The KWG can also become obstructed if there is another KWG behind it(Figure 2).
*The rotor blades must remain free from obstruction by blocks or other rotors. (Figure 1)  
*This will occur if there is another KWG behind it and in range of the rotors up to 22 blocks away. Because of this, it is considered impractical to have KWG's set up like that, instead it much more preferred to have them in a line (Figure 3) or in a grid(Figure 4).
*A Wind Turbine can also become obstructed if there is another Wind Turbine behind it. (Figure 2)  
*This will occur if there is another KWG behind it and in range of the rotors up to 22 blocks away. Specifically, the distance is 3x the radius of the rotors. Because of this, it is considered impractical to have Wind Turbines set up as such, instead it much more preferred to have them in a line (Figure 3) or in a grid (Figure 4).
<br clear=all/>
<br clear=all/>
== Rotors ==
== Rotors ==


The rotor equipped by the KWG will strongly affect the output of the generator. Each rotor has a different cost, durability, and wind requirement. This means that even the low-level Wood Rotor can be useful in some circumstances.  
The efficiency of rotor equipped by the Wind Turbine will strongly affect the output of the generator.
Each rotor has a different material cost, durability, and wind speed requirement.
This means that even the lowly Wood Rotor can be useful in some circumstances where wind levels are not sufficient to run a larger rotor.  


=== Wood Rotor ===
{| class="wikitable"
! style="text-align: center; font-weight:bold;" | Rotor Type
! style="text-align: center; font-weight:bold;" | Radius
! style="text-align: center; font-weight:bold;" | Efficiency
! style="text-align: center; font-weight:bold;" | Durability(s)
! style="text-align: center; font-weight:bold;" | Durability(d)
! style="text-align: center; font-weight:bold;" | Min Wind Strength
! style="text-align: center; font-weight:bold;" | Max Wind Strength
! style="text-align: center; font-weigth: bold;"| Materials
|-
| style="text-align: center;" | Wood Rotor
| style="text-align: center;" | 5
| style="text-align: center;" | 0.25
| style="text-align: center;" | 10800
| style="text-align: center;" | 0.125
| style="text-align: center;" | 10
| style="text-align: center;" | 60
| style="text-align: center;" | {{Gin|Iron}} * 1 + {{Gin|Wood}} * 18
|-
| style="text-align: center;" | Iron Rotor
| style="text-align: center;" | 7
| style="text-align: center;" | 0.5
| style="text-align: center;" | 86400
| style="text-align: center;" | 1
| style="text-align: center;" | 14
| style="text-align: center;" | 75
| style="text-align: center;" | {{Gin|Iron}} * 45
|-
| style="text-align: center;" | Steel Rotor
| style="text-align: center;" | 9
| style="text-align: center;" | 0.75
| style="text-align: center;" | 172800
| style="text-align: center;" | 2
| style="text-align: center;" | 17
| style="text-align: center;" | 90
| style="text-align: center;" | {{Gin|Steel Ingot}} * 36 + {{Gin|Iron}} * 9
|-
| style="text-align: center;" | Carbon Rotor
| style="text-align: center;" | 11
| style="text-align: center;" | 1.0
| style="text-align: center;" | 604800
| style="text-align: center;" | 7
| style="text-align: center;" | 20
| style="text-align: center;" | 110
| style="text-align: center;" | {{Gin|Coal}} * 288 + {{Gin|Steel Ingot}} * 9
|}
 
=== Recipes ===


{|
{|
Line 39: Line 114:
|A2=Wood Rotor Blade|B2=Iron|C2=Wood Rotor Blade
|A2=Wood Rotor Blade|B2=Iron|C2=Wood Rotor Blade
|B3=Wood Rotor Blade
|B3=Wood Rotor Blade
|Output=Kinetic Wind Generator Rotor (Wood)
|Output=Kinetic Gearbox Rotor (Wood)
|}}<br>See: [http://crafting-guide.com/item/kinetic_wind_generator_rotor_wood Crafting Guide]
|}}
|{{Grid/Crafting Table
|{{Grid/Crafting Table
|A1=Wooden Planks|B1=Wood|C1=Wooden Planks
|A1=Wooden Planks|B1=Wood|C1=Wooden Planks
Line 46: Line 121:
|A3=Wooden Planks|B3=Wood|C3=Wooden Planks
|A3=Wooden Planks|B3=Wood|C3=Wooden Planks
|Output=Wood Rotor Blade
|Output=Wood Rotor Blade
|}}<br>See: [http://crafting-guide.com/item/wood_rotor_blade Crafting Guide]
|}}
|}
|-
 
The Wood Rotor lasts 3 IRL hours inside the KWG and requires wind levels between 10 and 60 MCW. It has a wingspan of 2 blocks. It takes about 20 Wood and 1 Iron to make one of these.
 
=== Iron Rotor ===
 
{|
|{{Grid/Crafting Table
|{{Grid/Crafting Table
|B1=Iron Rotor Blade
|B1=Iron Rotor Blade
|A2=Iron Rotor Blade|B2=Shaft (Iron)|C2=Iron Rotor Blade
|A2=Iron Rotor Blade|B2=Shaft (Iron)|C2=Iron Rotor Blade
|B3=Iron Rotor Blade
|B3=Iron Rotor Blade
|Output=Kinetic Wind Generator Rotor (Iron)
|Output=Kinetic Gearbox Rotor (Iron)
|}}<br>See: [http://crafting-guide.com/item/kinetic_wind_generator_rotor_iron Crafting Guide]
|}}
|{{Grid/Crafting Table
|{{Grid/Crafting Table
|A1=Iron Plate|B1=Iron|C1=Iron Plate
|A1=Iron Plate|B1=Iron|C1=Iron Plate
Line 65: Line 134:
|A3=Iron Plate|B3=Iron|C3=Iron Plate
|A3=Iron Plate|B3=Iron|C3=Iron Plate
|Output=Iron Rotor Blade
|Output=Iron Rotor Blade
|}}<br>See: [http://crafting-guide.com/item/iron_rotor_blade Crafting Guide]
|}}
|}
|-
 
The Iron Rotor lasts 24 IRL hours inside the KWG and requires wind levels between 14 and 75 MCW. It has a wingspan of 3 blocks.
 
=== Refined Iron Rotor ===
 
{|
|{{Grid/Crafting Table
|{{Grid/Crafting Table
|B1=Refined Iron Rotor Blade
|B1=Steel Rotor Blade
|A2=Refined Iron Rotor Blade|B2=Shaft (Iron)|C2=Refined Iron Rotor Blade
|A2=Steel Rotor Blade|B2=Shaft (Iron)|C2=Steel Rotor Blade
|B3=Refined Iron Rotor Blade
|B3=Steel Rotor Blade
|Output=Kinetic Wind Generator Rotor (Refined Iron)
|Output=Kinetic Gearbox Rotor (Steel)
|}}<br>See: [http://crafting-guide.com/item/kinetic_wind_generator_rotor_steel Crafting Guide]
|}}
|{{Grid/Crafting Table
|{{Grid/Crafting Table
|A1=Refined Iron Plate|B1=Refined Iron|C1=Refined Iron Plate
|A1=Steel Plate|B1=Steel Ingot|C1=Steel Plate
|A2=Refined Iron Plate|B2=Refined Iron|C2=Refined Iron Plate
|A2=Steel Plate|B2=Steel Ingot|C2=Steel Plate
|A3=Refined Iron Plate|B3=Refined Iron|C3=Refined Iron Plate
|A3=Steel Plate|B3=Steel Ingot|C3=Steel Plate
|Output=Refined Iron Rotor Blade
|Output=Steel Rotor Blade
|}}<br>See: [http://crafting-guide.com/item/steel_rotor_blade Crafting Guide]
|}}
|}
|-
 
The Refined Iron Rotor last 3 IRL days (72 hours) inside the KWG and requires wind levels between 17 and 90 MCW. It has a wingspan of 4 blocks.
 
=== Carbon Rotor ===
 
{|
|{{Grid/Crafting Table
|{{Grid/Crafting Table
|B1=Carbon Rotor Blade
|B1=Carbon Rotor Blade
|A2=Carbon Rotor Blade|B2=Shaft (Refined Iron)|C2=Carbon Rotor Blade
|A2=Carbon Rotor Blade|B2=Shaft (Steel)|C2=Carbon Rotor Blade
|B3=Carbon Rotor Blade
|B3=Carbon Rotor Blade
|Output=Kinetic Wind Generator Rotor (Carbon)
|Output=Kinetic Gearbox Rotor (Carbon)
|}}<br>See: [http://crafting-guide.com/item/kinetic_wind_generator_rotor_carbon Crafting Guide]
|}}
|{{Grid/Crafting Table
|{{Grid/Crafting Table
|A1=Carbon Plate|B1=Combined Carbon Fibers|C1=Carbon Plate
|A1=Carbon Plate|B1=Combined Carbon Fibers|C1=Carbon Plate
Line 103: Line 160:
|A3=Carbon Plate|B3=Combined Carbon Fibers|C3=Carbon Plate
|A3=Carbon Plate|B3=Combined Carbon Fibers|C3=Carbon Plate
|Output=Carbon Rotor Blade
|Output=Carbon Rotor Blade
|}}<br>See: [http://crafting-guide.com/item/carbon_rotor_blade Crafting Guide]
|}}
|}
|}


The Carbon Rotor lasts 7 IRL days (168 hours) inside the KWG and requires wind levels between 20 and 110 MCW. It has a wingspan of 5 blocks. It takes 288 Coal to make one of these.
=== Notes ===
 
* If wind strength exceed the max wind strength of rotor, the rotor will still work, but will cost 4 times durability.

Revision as of 03:39, 11 March 2019

The Kinetic Wind Generator, with an Iron Rotor inside, in action

The Kinetic Wind Generator (or Wind Turbine) is an upgrade of the old Grid Windmill.png Windmill. It generates energy from wind power. The Wind Turbine requires maintenance, as the rotor will need to be replaced.

A rotor is required to run a Wind Turbine. Once a rotor is placed inside the GUI, the turbine is given sufficient space, and the wind level is strong enough for the rotor, the Wind Turbine will generate Kinetic Energy. This can be converted into EU with a Grid Kinetic Generator.png Kinetic Generator placed next to the turbine.

Recipe[edit]


Grid Shaft (Iron).png


Grid Machine.png


Grid Shaft (Iron).png


Grid Kinetic Wind Generator.png


Kinetic Unit Output[edit]

KU output = wind strength * output modifier * rotor efficiency

Arguments in the formula:

Wind strength: the strength of wind, can be test by Grid Windmeter.png Windmeter;

Output modifier: Used for control the balance of different energies, is 1.0 by default;

Motor efficiency: Related to rotor type.

Wind Strength[edit]

The wind strength, measured in MCW, is affected by 3 factors: Height, Weather, and a Random Factor.

Height is a main factor of wind strength. Below y = 64, there is never enough wind, and the generator will not create EU at all. Wind is strongest at around y = 160. There is very little wind at y=255, hence no point attempting to run a wind turbine that high.

Weather also give boosts. Rainy weather will yield a 25% boost. Stormy weather will yield a 50% boost.

At every update, the wind direction may change +18 degree or -18 degree or not change. The three choices have same probabilities. There's no evidence that the wind direction will affect EU generation.

The easiest way to check the current wind level in an area is by using a Grid Windmeter.png Windmeter.

Spacing[edit]

Figure 1. Notice how the rotors overlap
Figure 3.
Figure 2. Notice how the third rotor in the background still functions
Figure 4.


For the most part, the only real space requirements of the Kinetic Wind Generator are the rotor blades.

  • The rotor blades must remain free from obstruction by blocks or other rotors. (Figure 1)
  • A Wind Turbine can also become obstructed if there is another Wind Turbine behind it. (Figure 2)
  • This will occur if there is another KWG behind it and in range of the rotors up to 22 blocks away. Specifically, the distance is 3x the radius of the rotors. Because of this, it is considered impractical to have Wind Turbines set up as such, instead it much more preferred to have them in a line (Figure 3) or in a grid (Figure 4).


Rotors[edit]

The efficiency of rotor equipped by the Wind Turbine will strongly affect the output of the generator. Each rotor has a different material cost, durability, and wind speed requirement. This means that even the lowly Wood Rotor can be useful in some circumstances where wind levels are not sufficient to run a larger rotor.

Rotor Type Radius Efficiency Durability(s) Durability(d) Min Wind Strength Max Wind Strength Materials
Wood Rotor 5 0.25 10800 0.125 10 60 Grid Iron.png Iron * 1 + Grid Wood.png Wood * 18
Iron Rotor 7 0.5 86400 1 14 75 Grid Iron.png Iron * 45
Steel Rotor 9 0.75 172800 2 17 90 Grid Steel Ingot.png Steel Ingot * 36 + Grid Iron.png Iron * 9
Carbon Rotor 11 1.0 604800 7 20 110 Grid Coal.png Coal * 288 + Grid Steel Ingot.png Steel Ingot * 9

Recipes[edit]


Grid Wood Rotor Blade.png


Grid Wood Rotor Blade.png
Grid Iron.png
Grid Wood Rotor Blade.png


Grid Wood Rotor Blade.png


Grid Kinetic Gearbox Rotor (Wood).png

Grid Wooden Planks.png
Grid Wooden Planks.png
Grid Wooden Planks.png
Grid Wood.png
Grid Wood.png
Grid Wood.png
Grid Wooden Planks.png
Grid Wooden Planks.png
Grid Wooden Planks.png
Grid Wood Rotor Blade.png


Grid Iron Rotor Blade.png


Grid Iron Rotor Blade.png
Grid Shaft (Iron).png
Grid Iron Rotor Blade.png


Grid Iron Rotor Blade.png


Grid Kinetic Gearbox Rotor (Iron).png

Grid Iron Plate.png
Grid Iron Plate.png
Grid Iron Plate.png
Grid Iron.png
Grid Iron.png
Grid Iron.png
Grid Iron Plate.png
Grid Iron Plate.png
Grid Iron Plate.png
Grid Iron Rotor Blade.png


Grid Steel Rotor Blade.png


Grid Steel Rotor Blade.png
Grid Shaft (Iron).png
Grid Steel Rotor Blade.png


Grid Steel Rotor Blade.png


Grid Kinetic Gearbox Rotor (Steel).png

Grid Steel Plate.png
Grid Steel Plate.png
Grid Steel Plate.png
Grid Steel Ingot.png
Grid Steel Ingot.png
Grid Steel Ingot.png
Grid Steel Plate.png
Grid Steel Plate.png
Grid Steel Plate.png
Grid Steel Rotor Blade.png


Grid Carbon Rotor Blade.png


Grid Carbon Rotor Blade.png
Grid Shaft (Steel).png
Grid Carbon Rotor Blade.png


Grid Carbon Rotor Blade.png


Grid Kinetic Gearbox Rotor (Carbon).png

Grid Carbon Plate.png
Grid Carbon Plate.png
Grid Carbon Plate.png
Grid Combined Carbon Fibers.png
Grid Combined Carbon Fibers.png
Grid Combined Carbon Fibers.png
Grid Carbon Plate.png
Grid Carbon Plate.png
Grid Carbon Plate.png
Grid Carbon Rotor Blade.png

Notes[edit]

  • If wind strength exceed the max wind strength of rotor, the rotor will still work, but will cost 4 times durability.